Wind engineering
Although earthquake loads dominate in California, a thorough investigation of wind effects was undertaken, as is standard with any long-span bridge. The aerodynamic performance of the bridge has been investigated through a program of wind tunnel testing and numerical wind buffeting analysis to confirm high wind speed strength and stability, as well as low wind speed serviceability against vortex shedding vibrations.
Innovative roadway engineering
The project’s bid package reference design also proposed a grade-separated flyover ramp for west-bound traffic seeking to exit the main roadway and cross to the southern side of the project. Arup’s value engineering identified that the same functionality could be delivered while eliminating the entire flyover structure. Arup proposed a roadway geometry that passed below the main roadway with a dedicated free-flowing two-lane U-turn, facilitated by a new underpass constructed through the existing main roadway embankment. As this is a common geometric configuration in the state of Texas, the arrangement is dubbed the “Texas U-turn.” Through innovative highway engineering, Arup rearranged the Port access roads so that truck traffic accessing the terminal facilities would use the same underpass both to get on and off the bridge, hence the “Double Texas U-turn.”
The proposed solution reduced project costs by close to $70 million while providing numerous functional advantages. Land previously reserved for the reference design flyover ramp bridge piers is now free to be used for other, revenue-generating purposes. It also reduced the carbon footprint associated with construction volume, as well as reduced environmental risks. A known hydrocarbon contaminant plume in the area meant that deep foundation tailings had to be processed as hazardous waste. However, by removing the need for foundations, this cost and risk were eliminated.